
DESIGN OF A NEURAL NETWORK SIMULATOR
ON A TRANSPUTER ARRAY

Gary Mclntire James Villarreal, Paul Baffes, and
Advanced Systems Engineering Dept. Ford Monica Rua Artificial Intelligence Section,
Aerospace, Houston, TX. NASNJohnson Space Center, Houston, TX.

Abstract

A high-performance simulator is being built
to support research with neural networks. All
of our previous simulators have been special
purpose and would only work with one or two
types of neural networks. The primary design
goal of this simulator is versatility; it should
be able to simulate all known types of neural
networks. Secondary goals, in order of
importance, are high speed, large capacity, and
ease of use. A brief summary of neural
networks is presented herein which
concentrates on the design constraints
imposed. Major design issues are discussed
together with analysis methods and the chosen
solutions.

Although the system will be capable of
running on most transputer architectures, it
currently is being implemented on a 40-
transputer system connected in a toroidal
architecture. Predictions show a performance
level nearly equivalent to that of a highly
optimized simulator running on the SX-2
supercomputer.

Introduction

There are several ways to simulate large
neural networks. Computationally speaking,
some of the fastest are via optical computers
and neural net integrated circuits (hardwired
VLSI). However, both methods have some basic
problems that make them unsuitable for our
research in neural networks. Optical
computers and hardwired VLSl are still under
development, and it will be a few years before

they will be commercially available. Even if
they were available today, they would be
generally unsuitable for our work because
they are very difficult (usually impossible) to
reconfigure programmably. A non-hardwired
VLSl neural network chip does not exist today
but probably will exist within a year or two. If
done correctly, this would be ideal for our
simulations. But the state of the art in
reconfigurable simulators are supercomputers
and parallel processors. We have a very fast
simulator running on the SX-2 supercomputer
(200 times faster than our VAX 11/780
simulator), but supercomputer CPU time is

For the purposes of our research,
several parallel processors were investigated
including the Connection Machine, the BBN
Butterfly, and the Ncube and Intel Hypercubes.
The best performance for our needs was
exhibited by the INMOS Transputer System.

Our previous neural network simulators
have been specific to one particular type of
algorithm and consequently would not work for
other types of networks. With this simulator
our primary goal is to be able to implement all
types of networks. This wil l be more
complicated but is deemed well worth the
effort. When we are finished, it should be
possible to implement a different kind of
network in less than a day. The performance
reduction will be less than 10 percent for this
general-purpose capability.

yfzy costly.

111

Example networks

To have examples to work with, let us consider
two very typical neural networks. The first is
a three-layer feedforward network (fig. 1)
that is to be trained with the generalized delta
learning algor i thm (also ca l led back
propagation). Rumelhart et. a1.[5] describe this
algorithm in detail. We will assume that every
node in one layer is connected to every node in
its adjacent layer. The network will be trained
with a number of I10 pairs which are an
encoding of the associations to be learned.
The sequence of events to the algorithm can be
described as follows. First, an input vector is
placed into the input nodes. The weight values
of the connections between the input layer and
hidden layer are then multiplied by the output
value of the corresponding input nodes and the
result is propagated forward to the hidden
layer. These products are collected and
summed at each node of the hidden layer. Once
all the nodes in the hidden layer have output
values, this process is repeated to propagate
signals from the hidden layer to the output
layer. When the output layer values are
computed, an error can be calculated by
comparing the output vector with the desired
output value of the I/O pair.

I n p u t 1

Hidden Layer

.e

v
Figure 1. - Feedforward network.

Layer

With this error computed, the weights at each
connection between the hidden and the output
layer can be adjusted. Next, the error values
are backpropagated from the output layer to
the hidden layer. Finally, each weight can be
adjusted for the connections between the input
and hidden layers.

This entire sequence is repeated for
each successive I/O pair. Note that this
algorithm has a sequence of events to it. Other
neural net algorithms do not; instead, every
node a n d connect ion updates i t se l f
con t i n u o us I y [2,4]. be
viewed as a sequence of length one.

Such a I g o r i t h m s can

n

Figure 2. - Hopfield net.

The second network to be considered is
the Hopfield network[l] shown in figure 2. it is
an auto-associative memory in which every
node is equivalent; i. e., they are all used as
inputs and outputs. Every node is connected to
every other node but is not connected to itself.
The connect ions are bidirect ional and
symmetric which means that the weight on the
connection from node i to node j is the same as
the weight from node j to node i.

Other neural networks impose different
constraints. For example, the connection
scheme may be totally random, or it may be
that every ninth node should be connected. The
equations used are very often different. The
order of sequencing forward propagation, back
propagation, weight adjusting, loading inputs,
etc., also may be dif ferent. Stochastic
networks update their values probabilistically.
Yet some generalizations can be made for
almost all types of networks and these are
what we have used as the basis of our
simulator design.

The f irst generalization is that all
network computations are local computations.
In other words, the computations only involve
a node and the nodes to which it is connected.

112

This is a generally accepted principal in the
literature and some authors even use it in the
definition of a neural network.

The second generalization is that all
neural computations can be performed by
applying functions to the state variables of a
node and its neighbors. While this is a trivial
restatement of Turing equivalence, the
emphasis here is that this can be done in a
computationally efficient manner.

The third generalization is that any
computation performed by a node on its input
signals can be decomposed into parallel
computations that reduce multiple incoming
signals to a single signal. This single signal is
then sent to a node to be combined with single
signals sent from the other paral lel
computations. This allows a node computation
to be broken apart, and the partial results
forwarded to the node which computes the
final result. For example, a computation that
is common to almost all networks is the dot
product which is a sum of products. This can
be decomposed into multiple sums of products
whose results are forwarded and summed.

Memory Utilization

For maximum memory efficiency, the target
design should have one memory cell of the
minimum possible size for each state variable
which the network must keep. These state
variables consist of the values kept for the
connections and nodes. For a connection in the
two networks above, one memory cell per
connection is needed since the only
information associated with a connection is
its weight. If the connectivity is like that of
the above two networks (where everything in
one layer in connected to everything in another
layer), the connection information can be
implicit. At the other extreme, where the
connectivity is totally random, a additional
pointer between nodes would have to be kept
for each connection.

For nodes, a network like the Hopfield
network only has to keep one variable: its
output value. The size of this output value,
however, can vary. Some networks work with
8-bit or 16-bit integers while others use
floating point numbers. Other kinds of
networks require additional state variables at

the nodes and connections. Almost all
networks include added representations to
ease debugging tasks. Because of these
differences in size, we have allowed the user
to specify node variables and their types by
defining structures in the C language to hold
the state variable information. This allows all
the flexibility of C (ie. integers, floats,
doubles, bytes, bit fields, etc.).

CPU Utilization

Since previous simulations have shown that a
neural net simulator spends almost all of its
time processing connections (typically, there
are many more connections than there are
nodes), an examination of execution speed
must focus on the calculations done for each
connection. The operation common to almost
all neural nets is some function of the dot
product. This is

oj = f (c W - 0.) I / /

where Oi is the output of the ith node, Oj is

the output of the j t h node, W j j is the

connecting weight, and f is some function
applied to the dot product (note that the time
spent executing the function f would be
relatively small in any sizable network since
there would be few nodes compared to the
number of connections). Notice that the above
computation can be thought of as a loop of
multiply-accumulate operations. For each
operation the computer must calculate two
addresses, fetch the two referenced variables,
multiply them together, and add that product
to a local register. If the addresses were
sequential, calculating a new address could be
done by incrementing a register. Otherwise, a
randomly connected network would require
that the computer fetch a pointer which would
be used as the address of O j .

Without the extra pointer, we could
imagine that the weight, W i i , and Oj could be

fetched in paral lel from two separate
memories and pushed into a pipeline where
they would be multiplied and summed. Using
today's electron ic components, memory
fetching would be the bottleneck with memory

1 1 3

access times of 100 nanoseconds (ns) per
fetch. Thus the execution rate of the
fetch-multiply-store loop above would be on
the order of 100 ns. If the weight and the
output could not be fetched in parallel, the
loop would take 200 ns. As a result the best

can be hoped for, even with a custom made
VLSl chip, is about 200 ns per cycle through
the loop. Of course, this can be done in parallel
with multiple chips. Said another way, this is
5 million connections per second per memory
bank. Since economic and time constraints
precluded the design of a VLSl chip, the best
commercially available hardware was sought.

Transputer Architecture

A transputer[3] is a 32-bit, 10 million-
instruction-per-second (MIPS), single-chip
microcomputer manufactured by INMOS, Great
Britain's leading semiconductor manufacturer.
Transputers are designed to be components in
large parallel processing systems and have
hardware multitasking for sub-microsecond
task switching times. Each transputer has four
10-Megabit per second, full duplex serial links.
We purchased the INMOS transputer system
ITEM 4000, a 40 transputer parallel processor
with capabilities of 400 MIPS, 50 MFLOPS, and
10 Mbytes total local memory (256K per
processor). An additional transputer plugs into
an IBM personal computer (PC) advanced
terminal (AT) with 2 Mbytes of memory. This
transputer uses the PC AT as its I/O
subsystem. Yet another transputer controls a
512x51 2x8 graphics board. The development
system has both the C language and OCCAM, the
parallel processing language of the transputer.

Decomposition of the Matrix

There are several ways to divide the nodes and
connections of the network among the
processors. One scheme is to copy the node
variables to all processors. This makes
allocation simpler, but it can use a lot of
memory. We have chosen to decompose the
connection matrix (fig. 3) into partitions that
require only a subset of node variables.

H

0

Figure 3. - Connection matrix.

The connection matrix is formed by having one
row and one column for each node in the
network. Assume that each row of the matrix
represents a "from" node (the source of a
connecting link) and each column a "to" node.
For every connection, a mark is placed at the
intersection of its from and to nodes. Figure 3
shows this for a three-layer feedforward
network where all of the input nodes are
connected to all of the hidden nodes and all of
the hidden nodes are connected to all of the
output nodes. The nodes and connections are
then allocated to processors by sectioning the
covered areas of this matrix into the same
number of regions as processors. A processor
associated with a region must have access to
both the from nodes represented by the rows
of its region and to the to nodes represented
by the columns. When a node is unidirectionally
transmitting a signal from one node to
another, the state variables of the from node
are not the same as the state variables of the
to node (in a typical case, the from node must
have a variable for its output value but the to
node must have an accumulator for its dot
product). Therefore, the state variables are
separated into "exported values" and "partial
results," and only the necessary variables are
kept in a processor. Thus the memory
allocation for copies of node variables
required by a processor when receiving a
region is equal to the height of the region (in
number of nodes) times the number of bytes
for the from node "exported" state variables
plus the width of the region times the number
of bytes for the to node "partial result" state
variables. Let us assume that the number of
bytes for from nodes is F, the number for to
nodes is T, the number of nodes in the network
is N and the number of processors we have is
p . Let US next assume the matrix is fully
covered, and that we have Some number of

114

processors that is a perfect square. If we
leave enough space for every node in a
processor the number of bytes allocated is (N F
+ NT) P . However, by partitioning the matrix,
the number of bytes allocated is (NF + NT)P
/dP (again, assuming square regions). This is
a factor of dP savings. When the allocations
are contiguous groups of nodes, node variable
structures can be stored in an array with
minimal overhead both in access time and
memory. Other schemes would necessitate
pointer or hash table overhead.

Load Balancing

A basic problem with most parallel processing
schemes is balancing the load evenly so that
all processors can be working most of the
time. If one processor is slower than the rest,
all of the other processors have to wait for it
to finish before they can all synchronize and
continue. Since the time of execution is
proportional to the number of connections that
a processor must process, our matrix
decomposition scheme solves this if equal
areas can be assigned to the processors. If the
matrix is fully covered, this is easy. But when
it is covered with many irregularly sized
areas, it is more difficult. We are developing a
heuristic method for doing this which we refer
to as our load balancing algorithm. Because
processes may be sequenced, as in the
generalized delta algorithm, it is necessary to
have a separate matrix for each asynchronous
phase group of connections. An asynchronous
phase group is defined as a set of connections
where all processing can be done in parallel. In
the generalized delta rule described above,
there are two phase groups: input to hidden and
hidden to output. The user specifies the phase
when he defines the group.

Mapping Macros

To get a system up and running in a reasonable
amount of time, the user is required to modify
a few sections of program and recompile the
source to create a network with his
specifications. This code modification method
offers total flexibility. The user specifies the
network by calling functions. He also must
specify the structures to hold the state

variables of nodes and connections. To specify
the equations to be applied, a "map-
connections" macro is provided which expands
to the actual code that goes in each of the
slave processors. This macro handles all of the
addressing and hands the user pointers to the
connection variables and to its two adjacent
node variables. The code that he provides can
do whatever he wants to the state variables. It
can propagate a signal forward, backward, or
both ways. It could initialize the weights. It
could save the weights to a file or recover
them. A similar "map-nodes" macro is also
provided. The macros create functions that are
called with an argument of the node group or
connection group to which the user wants the
function applied. This macro approach expands
to code that is 90 percent as run-time-
efficient as can be handcoded. To execute the
sequencing of the generalized delta rule the
user would call a predefined function that
loads the inputs. The user would then
broadcast a message to all processors that
would invoke his macro-defined function with
an argument of the input to hidden connection
group. This function executes in parallel in all
of the slave processors. It first checks to be
sure it has connections from the input to
hidden connection group; if not it just
responds "done" to the master. The user then
broadcasts to invoke his function that was
defined with "map nodes" to process the
hidden nodes. The same is done from the hidden
nodes to output nodes. Backpropagating is very
Similar but the user invokes dif ferent
functions. He probably would name this routine
"t r a i n-o n e-i n p u t-o ut p u t-p a i r " it
inside a loop to do all of his training.
Likewise, the user might define a function
called "output-of" that takes an input vector
as argument, propagates it through the
network, and returns an output vector. I f the
user used symbolic constants in his functions,
he would only have to change constants such
a s N u m b e r - o f - i n p u t - n o d e s ,
N u m b e r - o f - h i d d e n - n o d e s a n d
Number-of-output-nodes to change their
sizes. Even architectural changes can be made
with small changes in the program (such as
connecting all input nodes to all output nodes
as well). Although this approach allows the
total flexibility that many users want, others

and cal I

115

wil l d is l ike t inkering with the code.
Ultimately, a much friendlier user interface
will be provided as well. We are considering
both a language and menu-driven graphics for
specification of the network.

Program Structure

The system architecture we are using is
master-slave. The master transputer in the
IBM PC acts as an interpreter of the commands
from the user interface. In turn, the master
issues commands to the slaves whose sole
task is to interpret commands from the
master. The slaves merely look the command
up in a table (index an array) and execute the
function associated with that command (whose
pointer is stored in the table). The argument to
the function is a pointer to the buffer that
holds the remainder of the command message
which contains the arguments to the function.

Synchronization

Synchronization of the master and slave
processes is accomplished by having the
slaves respond to every command. When the
master gets as many responses as there are
processors, he can continue.

Communication

Since processors are only connected in a point
to point fashion, a message between two
non-adjacent processors must be relayed by
intermediate processors. Our communications
process inside each processor continually
waits for a message to come in from any of
the four input ports and, when one comes in, it
reads the address in the message and looks in
a table (indexes an array) to determine the
appropriate output channel for retransmitting
the message (a channel is a logical port; it
may be a physical port or a location in
m e m o r y [3]) . Buffering is used in each
processor to avoid deadlock and to smooth
irregularities in transmission rates.

Even though it reduces the total amount
of communication required, the method of
decomposing the matrix means that some
nodes are split across processors and that the
partial results accumulated at several of the

processors must be shipped to a central
location (for this node) to be combined. This
location is called the home processor of the
node. Each processor is home for a roughly
equal number of nodes that are in the same
asynchronous processing phase. When a
map-nodes function is called, it is applied in
the home processor of the node with the
variables which it contains. These are
referred to as the static variables of the node.
Since they do not have multiple copies, the
static variables use little memory.

So the bulk of the communications
results from processors sending partial
results to the home nodes and from home nodes
exporting these processed values to several
processors. Analyzing the time this will take
is very difficult, but there are two potentially
l imiting factors that we can analyze
individually: the limit set by the serial links
and the limit set by the CPU cycles required to
buffer and relay messages. Surprisingly, the
CPU time is the limiting factor. The analysis
is as follows.

The number of processors that ship a
message home and that the home node ships to
can be seen by examining the sections of the
connection matrix after the areas have been
carved out. Let us assume that a fully covered
matrix has been evenly partitioned into 5 rows
by 8 columns and that each of the 40
processors gets 1 partition. From a home node
processor's point of view, five processors
must ship their partial results to the home
node processor and this processor must
combine these results and ship this new output
value to eight processors (let us assume the
home processor is not one of these). This
means that there are 14 messages shipped for
every node. It can be determined by
enumeration that the average distance
between processors in our array (fig. 4) is 3.5
l inks.

116

second. When this is distributed over the 40
Drocessors. each one must do 416.300 S1 aves

Graphics Transput

Figure 4. - Processor configuration

Each of these 14 messages must travel over
3.5 links, yielding 3.5 (5 + 8) = 46
transmissions per node. If each message is 12
bytes (96 bits) long, this is 96 * 46 = 4416
bits transmitted per node. Since each serial
link is 10 million bits per second and there are
80 full duplex serial links in our network,
there are 2 80 * 10million = 1600 million
transmitted bits per second possible (This
assumes that every bit slot is being used,
which is not likely; but if adequate buffering
is available and the CPU retransmit speed is
sufficiently fast, this is almost the case (> 50
percent of this)). Dividing this by 4416 bits
gives 362,318 nodes that could transmit each
second. This means that the serial-link is
limited to about 362,000 nodes per second.
This could become the limiting factor in
networks with large numbers of nodes and few
connections per node; but, typically, there will
only be a few thousand nodes in a network so
other things will probably limit throughput
before the serial links do.

To examine the CPU speed requirement,
remember that there are 46 transmissions per
node. For each of these, a processor must
receive the message, buffer it, determine the
port to which it should be sent, and then
retransmit it. The transputer direct memory
access (DMA) hardware handles the receiving
and transmitting concurrently. All the CPU
must do is copy the received message to a
buffer, determine where to send it, and later
copy it from the buffer. There are 46
transmissions per node, and a serial-link-
limited rate of 362,000 nodes per second is 46

362,000 = 16,652,000 transmissions per

transmissions or one transmission every 2.4
microseconds (ps). Yet summing instruction
execution times shows that the transputer
will actually take about 10 ps to retransmit
for a rate of 81,600 nodes per second. This is
about four times slower than the serial link
rate. So the speed of processing networks on
this system is still CPU limited.

It takes about 2 ps to fetch operands
and do a multiply accumulate on our 20 MHZ
transputer. This is what must be done at each

connection when propagating forward. Forty
t ransputers can process 20 mi l l ion
connections per second. The time to propagate
an input forward to get an output from a
feedforward network can be estimated by
(number-of-connections / 20 million) +
(number-of-nodes / 81,600) since these two
terms represent 90 percent of the processing
in typical networks.

The 2 ps required for each fetch-
multiply-accumulate loop is about 10 times
slower than what would be possible with a
handcrafted VLSl chip but is significantly
f a s t e r t h a n m o s t o t h e r 3 2 - b i t
microprocessors. This, along with the
capability of packing several transputers in a
very small space, makes a transputer array a
very cost effective solution to neural network
simulation with off the shelf components.

Conclusion

We have discussed the constraints imposed by
neural networks on simulation. We have shown
what is achievable in terms of memory
efficiency and simulation speeds and have
compared our design to this. We have discussed
a technique for partitioning a neural network
to minimize memory waste on a parallel
machine. The program structure also was
discussed. The communication network was
analyzed to determine what the costs of
communication are. The resulting design gives
us a neural network simulator that has a
performance level nearly equivalent to the
highly optimized simulator we have running on
the SX-2 supercomputer for a cost equivalent
to 2 days of CPU time on that supercomputer.

117

References

1. Hopfield, J., "Neural Networks and
P h y s i c a l Sys tems w i t h Emergen t
C o I I ec t i ve Cap ab i I i t i es " ,
Proceedings of the National Academy of
Science, USA, Vol 79, April, 1982, pp.

C o m put at i o n a I

2554-2558 .

2. Hopfield, J., "Neurons wi th Graded
Response Have Collective Computational
Proper t ies L ike Those o f Two-State
Neurons", Proceedings of the National
Academy of Science, USA, Vol 81, May,
1984, pp. 3088-3092.

3. INMOS Transputer Reference Manual
INMOS Ltd. 72-TRN-006-03, Bristol, UK
1987 .

4. Grossberg, S. STUDIES OF MIND AND
BRAIN: NEURAL PRINCIPALS OF LEARNING,
PERCEPTION, DEVELOPMENT, COGNITION
AND MOTOR CONTROL, Reidel Press,
Boston, MA.

5. McClelland, J., and Rumelhart, D.,
PARALLEL DISTRIBUTED PROCESSING:
EXPLORATIONS IN THE MICROSTRUCTURE
OF COGNITION, MIT Press, Cambridge,
MA, 1986.

118

